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SUMMARY

We examine the convergence characteristics of iterative methods based on a new preconditioning op-
erator for solving the linear systems arising from discretization and linearization of the steady-state
Navier–Stokes equations. For steady-state problems, we show that the preconditioned problem has an
eigenvalue distribution consisting of a tightly clustered set together with a small number of outliers.
These characteristics are directly correlated with the convergence properties of iterative solvers, with
convergence rates independent of mesh size and only mildly dependent on viscosity. For evolutionary
problems, we show that implicit treatment of the time derivatives leads to systems for which conver-
gence is essentially independent of viscosity. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We study the performance of a preconditioning methodology designed for use with Krylov
subspace iteration to compute the numerical solution of the incompressible Navier–Stokes
equations

�ut − ��u+ (u · grad)u+ gradp = f ;
−div u = 0;

in � (1)
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subject to suitable boundary conditions on @�, where � is an open bounded domain in R2 or
R3, u is the velocity and p is the pressure. The cases �=0 and 1 correspond to steady-state
and evolutionary problems, respectively. In both cases we will consider a non-linear iteration
in which the convection coe�cient is lagged but all other terms are treated implicitly. This
is equivalent to the linearization of (1)

�ut − ��u+ (w · grad) u+ gradp = f
−div u = 0

(2)

where w is such that divw=0. For steady-state problems, this system arises from a Picard
iteration for (1), for transient problems, we will treat the time derivative using a backward
Euler discretization.
Discretization in space using a div-stable strategy [1] leads to a linear system(

F BT

B 0

)(
u
p

)
=

(
f
0

)
(3)

F is a discrete convection–di�usion operator, i.e. it has the form F = �(1=�t)M + �A + N
where A is a discrete di�usion operator, N is a discrete convection operator, M is mass matrix
de�ned on the velocity space, and B and BT are discrete divergence and gradient operators,
respectively.
Let A denote the coe�cient matrix of (3). For a preconditioner, we consider an operator

of the form

PA=

(
PF BT

0 −PS

)
(4)

designed to be applied with right orientation. P−1
F approximates the action of the inverse of

the discrete convection–di�usion operator F , and P−1
S approximates the action of the inverse

of the Schur complement operator S=BF−1BT. In the special case PF =F and PS = S, the
preconditioned matrix is

AP−1
A =

(
I 0

BF−1 I

)

use of this preconditioner with GMRES iteration [2] would require precisely two steps to
compute the exact solution [3]. The advantage of this general approach is that, it reduces the
problem of �nding preconditioners for (3) to that of �nding good techniques de�ning P−1

F
and P−1

S .
Since F is a discrete convection–di�usion operator, there is a natural way to de�ne P−1

F :
the action of F−1 can be approximated using any appropriate iterative method (for example,
multigrid) for solving the convection–di�usion equation. We will discuss some practical issues
concerning this point in Section 5. In our experience, the choice of the operator PS is more
critical, and we simplify our study here by using PF =F . For PS , the approximation to the
Schur complement, we use

PS =ApF−1
p Mp (5)
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Table I. Iteration counts for convergence of the preconditioned GMRES solver.

�

1=20 1=40 1=80 1=160 1=320

MAC �nite di�erences
h=1=16 17 20 24 31 39
1=32 17 21 26 33 43
1=64 16 21 26 34 44
1=128 16 20 26 33 45

P2 − P1 �nite elements
h=1=16 18 21 26 37 62
1=32 17 21 26 33 47
1=64 17 20 25 33 43

where Ap and Fp represent discrete approximations to scaled Laplacian and convection–
di�usion operators de�ned on the pressure space, and Mp is the pressure mass matrix. This
idea was �rst proposed by Kay and Loghin [4] and considered further in Reference [5]. We
refer to the operator of (5) as the Fp-preconditioner. This report is a summary and extension
of results described in detail in Reference [6].

2. THE LINEARIZED STEADY-STATE PROBLEM

We begin with some experimental results for solving a linearized version of the driven cavity
problem, in which (2) is posed on �=(0; 1)× (0; 1), with f =0, boundary conditions

u1 = u2 = 0; for x=0; x=1 or y=0

u1 = 1; u2 = 0; for y=1

and convection coe�cients (or ‘wind’)

w=

(
2(2y − 1)(1− (2x − 1)2)
−2(2x − 1)(1− (2y − 1)2)

)

This choice of the wind, which contains a single recirculation in �, is used to simulate what
happens in the Picard iteration for the driven cavity problem, where the solution contains
one primary recirculation. We examine two div-stable discretizations, marker-and-cell (MAC)
�nite di�erences [7, 8], and P2 − P1 �nite elements [1] which uses triangular elements with
piecewise quadratic bases for the velocity components and a piecewise linear basis for the
pressure. We discretize (2) in � using a uniform mesh of width h. Ap and Fp are de�ned
on the discrete pressure spaces in the natural way via �nite di�erences for MAC and linear
elements for P2 − P1. The mass matrices for the MAC discretization have the form h2I .
Table I shows the number of iterations required by the preconditioned GMRES solver, for

both discretizations and a variety of values of the mesh size h and viscosity parameter �. (All
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Figure 1. Complete record of ‖rk‖2=‖r0‖2 generated by GMRES, for �nite di�erences with h=1=128
(left) and P2 − P1 �nite elements with h=1=64 (right).

computations were performed using Matlab on a Sun Sparc Ultra 1 computer.) The initial
guess was identically zero, and the stopping criterion was (‖rk‖2=‖r0‖2)¡10−6, where rk is the
residual vector. These experiments clearly show that convergence is essentially independent
of the discretization parameter but that there is modest dependence on the viscosity, with
reductions in � (i.e. increases in the Reynolds number) leading to increases in iteration counts.
Figure 1 shows the details of convergence histories for some of these entries, corresponding to
�xed h and varying �. The �gures suggest that in fact the asymptotic convergence behaviour of
the GMRES iteration is also independent of �, but that there is a period of slow convergence
in the early stages of the iteration, and this latency period is longer for smaller values of �.

Remark
The behaviour exhibited here is similar to that observed by Kay and Loghin [4] in a wide
variety of examples, including pipe �ow, �ow past a cylinder, and �ow over a backward facing
step. Moreover, although we only consider div-stable discretizations here, the methodology
also applies to stabilized schemes, as long as suitable operators Ap and Fp are available for
(5).

We next show that this convergence performance is correlated with the eigenvalues of the
coe�cient matrix. Let the preconditioned system be denoted

Ax= f

(so that A=AP−1
A ), and let the residual associated with an iterate xm be given by

rm= f − Axm
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Figure 2. Dependence of eigenvalues on mesh size for the MAC discretization, �=1=80.

Assume A=V�V−1 is diagonalizable, and let �(A) denote the set of eigenvalues of A.
Recall the standard bound on convergence of GMRES [2]

‖rm‖26�(V ) min
pm(0)=1

max
�∈�(A)

|pm(�)| ‖r0‖2 (6)

where the minimum is over all polynomials of degree m taking on the value 1 at the origin,
and �(V )= ‖V‖2 ‖V−1‖2 is the condition number of the matrix of eigenvectors.
To use this result to explain the behaviour of the GMRES iteration, we examine the eigen-

values of the Fp-preconditioned matrices SP−1
S . For brevity, we only present the results for

the MAC discretization, the trends for P2−P1 �nite elements are similar and can be found in
Reference [6]. Figure 2 plots eigenvalues for �=1=80 and four successively re�ned meshes.
For h=1=16 and 1=32, the �gure shows all eigenvalues; for h61=64 and 1=128, only a subset
consisting of extremal eigenvalues are shown. These data show that the extremal eigenvalues
display no signi�cant dependence on h, indeed, the tabulated results included in the �gure
show that the maximum real parts, maximum imaginary parts, and minimum real parts of all
eigenvalues are virtually identical for all four mesh parameters. In addition, for the examples
in which all eigenvalues have been computed (h¿1=32), most of them with the exception of
a few outliers lie in a tightly clustered set close to 1. Table II explores these trends further by
identifying the dependence of the outliers on the viscosity parameter �. It shows the extreme
real and imaginary parts, as well as the three next smallest real parts, for h=1=128. We see
that the largest imaginary part is increasing in proportion to �−1, and for small enough �,
the smallest real part is decreasing in proportion to �2. A similar statement applies for the
other small real parts, although the asymptotic behaviour is evident only for somewhat smaller
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Table II. Dependence of eigenvalues on � for the MAC discretization and h=1=128.

� Extremal real and imaginary parts Other small real parts

�(�)min �(�)max �(�)max �2 �3 �4

1=20 0.2402 1.2017 2.8015 0.2410 0.2411 0.3323
1=40 0.1073 1.5389 5.6224 0.2486 0.2495 0.2553
1=80 0.0293 1.9010 11.2605 0.2444 0.2597 0.2608
1=160 0.0075 2.1265 22.5330 0.0786 0.2635 0.2747
1=320 0.0019 2.3008 45.0749 0.0209 0.0860 0.2158
1=640 0.0005 2.4403 90.1561 0.0053 0.0230 0.1388

Figure 3. Containment of eigenvalues in a clustered set, MAC discretization, h=1=32.

values of �. That is, there are some eigenvalues that are decreasing in proportion to �2, but
the set (of indices of eigenvalues) for which this pattern holds appears to be small.
Additional insight is obtained from Figure 3, which shows the clustered eigenvalues in

the case h=1=32 for various values of �. In contrast to Figure 2, the axes here are in
proportion and some of the eigenvalues with large imaginary part are not shown. The circle
centred at (0:8; 0) with radius 1=2 represents a domain, determined by inspection, containing
the majority of eigenvalues. Table III continues in this direction by showing how many
eigenvalues lie outside this circle for di�erent values of �, for the two mesh parameters for
which all eigenvalues have been computed. These data indicate that in fact the number of
outliers is small but growing slightly with �−1. The number of eigenvalues with small real
parts (i.e. to the left of the circle) is also increasing as � gets smaller, but quite a bit more
slowly than the total number of outliers.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:333–344



BLOCK PRECONDITIONERS FOR NAVIER–STOKES EQUATIONS 339

Table III. Number of eigenvalues outside circle, for MAC discretization and
h=1=16; 1=32.

� No. eigenvalues outside circle No. real eigens left of circle

1=16 1=32 1=16 1=32

1=40 7 7 1 1
1=80 8 8 2 2
1=160 11 12 3 3
1=320 19 21 4 4
1=640 25 29 6 6

These observations can be combined with (6) to explain the convergence behaviour of the
GMRES iteration, the approach is derived from Reference [9]. Let �(A)=�c(A)∪�0(A)
where �c(A) denotes the clustered set of eigenvalues of A and �0(A)= {�1; �2; : : : ; �d}
denotes the set of d outliers. Taking m=d+ k in (6), we have

min
pk+d(0)=1

max
�∈�(A)

|pk+d(�)|6 max
�∈�c(A)

|�d(�)| |Ck(�)| (7)

where

�d(�)=
(
1− 1

�1
�
)(

1− 1
�2
�
)
· · ·
(
1− 1

�d
�
)

is the polynomial of degree d whose roots are the outlying eigenvalues contained in �0(A),
and Ck is any polynomial of degree k satisfying Ck(0)=1. Ck can be chosen to be small on
a set E containing �c(A) such that

max
�∈�c(A)

|Ck(�)| ≈�k

If the enclosing set E is bounded by a circle centred at c with radius r as above, then the
choice Ck(�)= ((c − �)=c)k is optimal with respect to L∞ on E [10, p. 90]. For this choice,
�= r=c, and it follows from (6) and (7) that

‖rm‖26�(V ) max
�∈�c(A)

|�d(�)|�k‖r0‖2

This bound suggests that there will be a latency of d steps before the asymptotic convergence
behaviour is observed. It is also demonstrated in Reference [6] that this is an accurate depiction
of what the GMRES iteration does: the initial stages of the iteration construct the polynomial
�d and after this, a faster asymptotic convergence rate is seen.
Note that any e�ects of �(V ) are not included in this discussion. We have calculated this

quantity for various choices of h and � and found it to have values on the order of 102–103,
but it exhibits no discernible pattern. We also computed eigenvalues of perturbed versions of
A, which give an indication of the �-pseudospectrum of A. In these computations, we found
that only certain eigenvalues lying inside the clustered region are sensitive to perturbation,
and the perturbations remain inside the clustered region. This helps explain why the analysis
above characterizes convergence behaviour [8].
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Table IV. Average inner iteration counts for Picard iteration, with outer iterations in
parentheses, for h=1=64.

�

1=20 1=40 1=80 1=160 1=320

MAC 6.5 (4) 9.0 (5) 11.6 (7) 15.6 (9) 22.5 (11)
P2 − P1 6.8 (4) 8.3 (4) 9.6 (5) 13.2 (6) 18.1 (7)

3. PICARD ITERATION FOR THE NON-LINEAR STEADY-STATE PROBLEM

The results above are for a �xed velocity �eld w in the steady-state Oseen equations (2) where,
in the experiments, w was chosen to resemble the driven cavity �ow �eld. The �xed wind
was used for convenience but it is somewhat arti�cial, since the structure of the convection
coe�cient w in a non-linear iteration will depend on the viscosity � and the stage of the
iteration in which the linearized system (2) appears. We now show the results of some
experiments with the full non-linear Picard iteration

−��u(m) + (u(m−1) · grad) u(m) + gradp(m) = f

−div u(m) = 0
(8)

for both discretizations and h=1=64.
Table IV shows the average iteration counts required when preconditioned GMRES is

used to solve each linear system arising during the non-linear iteration. For completeness,
the number of Picard iterations is also shown, in parentheses. These tests were run using an
‘inexact’ non-linear iteration (8), with the stopping criterion for the linear solver tied to the
residual of the non-linear system. That is, the linear iteration was stopped at step k when the
linear residual vector rk satis�ed

‖rk‖2610−2‖F(x(m−1))‖2
where

x(m−1) =

(
u(m−1)

p(m−1)

)

and

F(x(m−1))

is the non-linear residual. The starting iterates were x(0)≡ 0 for the non-linear system and the
most recent non-linear iterate for the linear system.
These results are consistent with what we observed for a �xed velocity �eld. In particular,

the dependence on � shown in Table IV is essentially the same as that depicted in Table I.
Similar results are also given in Reference [4]. The lower iteration counts are due to the
less stringent stopping criterion. Further comparison is provided by Figure 4, which shows
the complete convergence histories of the linear solves for one problem, with �=1=160 and
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Figure 4. Convergence histories of preconditioned GMRES inner iteration for the full Picard itera-
tion with �=1=160, P2 − P1 discretization, h=1=64. The curve labelled ‘i’ shows the residual norms

for the inner iteration at the ith Picard step.

the P2 − P1 discretization. This data is typical of the results for all the problems. Except in
the �rst non-linear step, which requires a Stokes solve, there is a latency exactly like that
observed above.

4. TRANSIENT PROBLEMS

We next show that the methodology described in Section 1 is directly applicable to transient
problems (�=1 in (1)), and the sensitivity to viscosity observed for steady-state problems is
eliminated.
For time discretization, we consider the linearized backward Euler scheme

u(m+1) − u(m)
�t

− ��u(m+1) + (u(m) · grad) u(m+1) + gradp(m+1) = f

−div u(m+1) = 0

This is a fully implicit discretization except the convection coe�cient is evaluated at the
previous time step. It is �rst-order accurate in time and unconditionally stable [12]. Spatial
discretization then leads to a linear system of the form (3) to be solved at each time step,
where F =(1=�t)M + �A+ N corresponds to discretization of a time-dependent convection–

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:333–344
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Table V. Average number of GMRES iterations per linear solve, for integration
of the driven cavity problem from t=0 to 1, with MAC spatial discretization

and various combinations of parameter.

1=40 1=80 1=160 1=320

h=1=32 �t=1=8 7.9 8.4 8.6 8.5
1=16 6.4 6.7 6.8 6.6
1=32 4.7 5.0 5.1 5.0
1=64 3.4 3.5 3.6 3.8

h=1=64 �t=1=8 8.3 9.3 9.9 10.1
1=16 6.4 7.4 7.9 8.2
1=32 4.7 5.5 6.1 6.3
1=64 3.4 3.8 4.2 4.5

h=1=128 �t=1=8 7.9 9.4 10.3 10.9
1=16 6.1 7.4 8.6 9.1
1=32 4.3 5.4 6.4 7.2
1=64 3.0 3.8 4.4 5.1

di�usion operator.‖ As a preconditioner, we use (4) with PF =F and PS as in (5), where
Fp=(1=�t)Mp + �Ap + Np is de�ned on the discrete pressure space.
Experimental results for this example are shown in Table V. In all the tests, we integrated

the driven cavity problem from t=0 to 1, starting from an initial condition u(x; 0)=0. We
used four di�erent time steps, for several values of � and the discretization mesh size h. The
MAC spatial discretization was used; similar results for P2 − P1 �nite elements were shown
in Reference [5]. The table shows the average number of iterations for these inner solves,
taken over all time steps. A stringent stopping criterion (‖rk‖2=‖r0‖2)¡10−6 was used for
every linear system solve. We did not examine accuracy with respect to the spatial or time
discretizations.
The main observation to be made from these data is the reduced dependence on viscosity

of performance of the linear solves. One way to see this clearly is to view the data across
the diagonal in the table corresponding to h=1=128. Here, the in�uence of spatial accuracy
is minimal and �t is reduced in proportion to �. In this case, the iteration counts are then
independent of �. An analogous conclusion is reached if �t is �xed and the horizontal rows
are considered, as long as the time step is small enough. We do note that there now appears
to be some new dependence on the discretization mesh size not seen previously; however,
the spatial dependence is actually less pronounced as the mesh is re�ned and our speculation
is that the asymptotic behaviour as h→ 0 will not depend on h.

‖Many other time discretizations, for example, variants of the Crank–Nicolson scheme [12], lead to such systems.
Our only goal is to demonstrate the general utility of the preconditioning methodology and we will not examine
any issues relating to time discretization here.
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5. PRACTICAL IMPLEMENTATION

We conclude by discussing some issues that would arise in a practical implementation of these
ideas. First, a precise speci�cation of the preconditioner PS of (5) requires that boundary con-
ditions be de�ned for the discrete operators Ap and Fp. For the case of an enclosed �ow
with speci�ed velocity conditions on @�, the discrete Schur complement operator BF−1BT

is conventionally associated with a Neumann operator for the pressure �eld, see Reference
[5]. This means that Ap and Fp should correspond to discrete elliptic problems with a stan-
dard Neumann boundary condition. In the case of a boundary segment with standard out�ow
boundary conditions, the Schur complement S (and its preconditioner PS) must be de�ned
with Dirichlet data for the pressure on that part of the boundary in order to ensure that
the preconditioning operator is elliptic over the pressure solution space. See Reference [13,
pp. 50–51], [14, pp. 36–43] for further discussion of these points.
Next, we discuss the algorithmic requirements of using the ideas presented here. As we

observed in Section 1, one requirement is an e�cient method for solving (or approximating
the solution to) the convection–di�usion equation. Similarly, P−1

S =M−1
p FpA−1

p , which means
that applying this operator requires a Poisson solve (for A−1

p ) and the solution of a system
of equations with the mass matrix (for M−1

p ). The latter computation has negligible cost, and
fast algorithms such as multigrid or domain decomposition can be used for the convection–
di�usion and Poisson solves. Kay and Loghin [4] showed that use of such inner iterations for
steady-state problems leads to performance consistent with that of the ‘exact’ preconditioner.
For evolutionary problems, the presence of the mass matrix in F will make the resulting
convection–di�usion subproblems easier to handle. Besides these requirements, the only others
entail e�cient implementation of the operations used by Krylov subspace solvers such as
matrix–vector products and inner products. The key point is that a complete solver with low
cost per iteration can be constructed in a modular fashion using more basic building blocks
designed for the subsidiary computations. Finally, although we have restricted our attention
to GMRES for the Krylov subspace method, we expect other solvers to perform well also.

ACKNOWLEDGEMENTS

H. C. Elman was supported in part by the U.S. National Science Foundation under Grant DMS9972490,
and in part by the Oxford University Computing Laboratory. D. J. Silvester was supported in part
by the Engineering and Physical Sciences Research Council Visiting Fellowship Grant GR=N25565.
A. J. Wathen was supported in part by the Engineering and Physical Sciences Research Council under
Grant GR=M59044.

REFERENCES

1. Girault V, Raviart PA. Finite Element Approximation of the Navier–Stokes Equations. Springer: New York,
1986.

2. Saad Y, Schultz MH. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems. Society for Industrial and Applied Mathematics Journal on Scienti�c and Statistical Computing
1986; 7:856–869.

3. Murphy MF, Golub GH, Wathen AJ. A note on preconditioning for inde�nite linear systems. Society for
Industrial and Applied Mathematics Journal on Scienti�c Computing 2000; 21:1969–1972.

4. Kay D, Loghin D. A Green’s function preconditioner for the steady-state Navier–Stokes equations. Technical
Report 99=06, Oxford University Computing Laboratory, 1999.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:333–344



344 H. C. ELMAN, D. J. SILVESTER AND A. J. WATHEN

5. Silvester D, Elman H, Kay D, Wathen A. E�cient preconditioning of the linearized Navier–Stokes equations
for incompressible �ow. Journal of Computational and Applied Mathematics 2001; 128:261–179.

6. Elman HC, Silvester DJ, Wathen AJ. Performance and analysis of saddle point preconditioners for the discrete
steady-state Navier–Stokes equations. Numerische Mathematik 2002; 90(4):641–664.

7. Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible �ow of �uid with free
surface. The Physics of Fluids 1965; 8:2182–2189.

8. Nicolaides RA. Analysis and convergence of the MAC scheme I. SIAM Journal on Numerical Analysis 1992;
29:1579–1591.

9. Jennings A. In�uence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method.
Journal of the Institute of Mathematics and its Applications 1977; 20:61–72.

10. Rivlin T. Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory. (2nd edn).
Wiley: New York, 1990.

11. Nachtigal NM, Reichel L, Trefethen LN. A hybrid GMRES algorithm for nonsymmetric linear systems. SIAM
Journal on Matrix Analysis and Applications 1992; 13:796–825.

12. Simo JC, Armero F. Unconditional stability and long-term behavior of transient algorithms for the
incompressible Navier–Stokes equations. Journal of Computational and Applied Mathematics 1994; 111:
111–154.

13. Turek S. E�cient Solvers for Incompressible Flow Problems. Springer: Berlin, 1999.
14. Dean E, Glowinski R. On some �nite element methods for the numerical simulation of incompressible viscous

�ow. In Incompressible Computational Fluid Dynamics, Gunzburger, MD Nicolaides RY (eds). Cambridge
University Press: New York, 1993; 17–65.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:333–344


